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Abstract
Integrable couplings of relativistic Toda lattice systems in polynomial
form and rational form, and their hierarchies, are derived from a four-by-four
discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every
integrable coupling in the two hierarchies obtained is established by means
of the discrete variational identity. Ultimately, Liouvolle integrability of the
obtained integrable couplings is demonstrated.

PACS number: 02.30.Ik, 02.90.+p

1. Introduction

In recent years, integrable lattice systems, treated as models of many physics phenomena,
have received considerable attention. Many integrable nonlinear lattice systems have been
derived. Their various algebraic and geometric properties have been studied from different
points of view [1–17]. In the lattice soliton theory, it is still an important and complicated task
to search for new integrable nonlinear lattice systems. Discrete zero curvature representation
is an effective method of constructing integrable nonlinear lattice systems.

A hierarchy of lattice systems

untm = Km(un,Eun,E
−1un, . . .), m � 0, (1)

is called Lax integrable if it can be rewritten as a compatibility condition

Untm = (
EV (m)

n

)
Un − UnV

(m)
n , m � 0, (2)

of a discrete spatial eigenvalue problem

Eϕn = Unϕn = Un(un, λ)ϕn (3)
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and a sequence of appropriate temporal eigenvalue problems

ϕntm = V (m)
n (un, Eun,E

−1un, . . .)ϕn, m � 0, (4)

where λ is an eigenvalue and λt = 0. The shift operator E and the inverse of E are defined by

Efn = fn+1, E−1fn = fn−1, n ∈ Z. (5)

Equations (3) and (4) are said to be a Lax pair of the hierarchy of integrable lattice systems
(1). Usually, the Un and V (m)

n are 2 × 2 matrices.
It is well known that the relativistic Toda lattice models{

rnt = rn(sn−1 − sn) + rn(rn−1 − rn+1),

snt = rnsn − rn+1sn,
(6)

and ⎧⎪⎨
⎪⎩

rnt = rn

sn−1
− rn

sn

,

snt = rn+1

sn+1
− rn

sn−1
,

(7)

are famous discrete integrable systems. They have important applications in physics, and
have been widely discussed [4–9]. In equations (6) and (7), rn = r(n, t) and sn = s(n, t) are
real functions defined over Z × R. Equation (6) is called the relativistic Toda lattice system
in polynomial form, and equation (7) is called the relativistic Toda lattice system in rational
form. The relativistic Toda lattice systems (6) and (7) are a source of new integrable lattice
systems; many integrable lattice systems related to the relativistic Toda lattice equations (6)
or (7) have been proposed and studied [12, 13].

There are many methods of generating new integrable lattice systems, one of which is
used to extend the known integrable lattice systems to larger and complicated ones from the
points of view of both potentials and dimensions. Recently, more and more attention has been
paid to the investigation of integrable couplings of soliton equations, both in the continuous
and discrete cases [18–28]. A few methods of constructing integrable couplings of the known
integrable systems are presented using the perturbation method [18, 19], enlarging eigenvalue
problems [20], semi-direct sums of Lie algebras [21–24] and so forth.

For a given hierarchy of integrable lattice systems,

untm = Km(un,Eun,E
−1un, . . .), m � 0,

in which un = u(n, t) is commonly a vector-valued real function defined over Z × R. We
actually want to construct a new bigger triangular hierarchy of integrable lattice systems as
follows: (

un

zn

)
tm

=
(

Km(un)

Sm(un, zn)

)
. (8)

In equation (8), zn is a new vector-valued real function defined over Z × R, and the
vector-valued function Sm(xn, yn) should satisfy the non-triviality condition ∂Sn(un,zn)

∂v
�= 0,

in which v = un,Eun,E
−1un, . . .. In addition, an important task in the theory of integrable

lattice systems is to establish the Hamiltonian structures for the integrable couplings under
consideration. Previously, the Hamiltonian structures of integrable lattice systems may have
been established by the discrete trace identity [6]. But it cannot be used to establish
the Hamiltonian structures of discrete integrable couplings [24]. In order to establish the
Hamiltonian structures of discrete integrable couplings, in [24], the discrete trace identity
was generalized to a discrete variational identity in the matrix Lie algebra which possesses
a non-degenerate symmetric bilinear form. Using the method of discrete zero curvature
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representation, the relativistic Toda lattice equations (6) and (7) may be derived from the same
discrete matrix eigenvalue problem:

Eϕn = Ynϕn, Yn =
(

0 1
rn λ + sn

λ

)
, ϕn =

(
ϕ1

n

ϕ2
n

)
. (9)

In this paper, we would like to introduce the 4 × 4 discrete matrix eigenvalue problem

Eψn = Un(un, λ)ψn, Un(un, λ) =

⎛
⎜⎜⎝

0 1 0 0
rn λ + sn

λ
vn

wn

λ

0 0 0 1
0 0 rn λ + sn

λ

⎞
⎟⎟⎠ , (10)

in which un = (rn, sn, vn, wn)
T , rn = r(n, t), sn = s(n, t), vn = v(n, t), wn = w(n, t) are

real functions defined over Z × R and ψn = (
ψ1

n , ψ2
n , ψ3

n , ψ4
n

)T
is the eigenfunction vector.

Let us set

Zn =
(

0 0
vn

wn

λ

)
.

It is evident that the

Un =
(

Yn Zn

0̃ Yn

)
,

where 0̃ is the 2 × 2 zero matrix. Therefore, equation (10) is an enlarging eigenvalue problem
of equation (9).

This paper is organized as follows. In section 2, starting from equation (10), we first
briefly deduce the relativistic Toda lattice hierarchies, which include the polynomial form and
rational form. In section 3, by dint of the appropriate temporal eigenvalue problems (4), in
which V (m)

n ,m � 0, only have positive powers of the eigenvalue λ, we derived the positive
integrable coupling hierarchy associated with enlarging the relativistic Toda lattice eigenvalue
problem (10). In the obtained positive integrable coupling hierarchy, a typical member is the
following integrable coupling of equation (6):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rnt1 = rn(rn−1 − rn+1) + rn(sn−1 − sn),

snt1 = sn(rn − rn+1),

vnt1 = rn(sn−1 − sn + wn−1 − wn + rn−1 − rn+1 + vn−1 − vn+1)

+vn(rn−1 − rn+1 + sn−1 − sn),

wnt1 = sn(rn + vn − rn+1 − vn+1) + wn(rn − rn+1).

(11)

If we set vn = −rn, wn = −sn, then equation (11) becomes{
rnt = rn(rn−1 − rn+1) + rn(sn−1 − sn),

snt = sn(rn − rn+1).

This is just the relativistic Toda lattice model in polynomial form (6). In section 3, we construct
the corresponding negative integrable coupling hierarchy from other temporal eigenvalue

problems (4), in which
�

V n
(m), m � 0, only have negative powers of the eigenvalue λ. In the

negative integrable coupling hierarchy obtained, the representative member is the integrable
coupling of equation (7):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rnt1 = rn

sn−1
− rn

sn
,

snt1 = rn+1
sn+1

− rn

sn−1
,

vnt1 = rn

sn−1
− rn

sn
+ rn

(
wn

s2
n

− wn−1

s2
n−1

)
,

wnt1 = rn+1
sn+1

− rn

sn−1
+ vn+1

sn+1
− vn

sn−1
+ rnwn−1

s2
n−1

− rn+1wn+1

s2
n+1

.

(12)
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If we set vn = 1
3 rn, wn = 2

3 sn, equation (12) is then reduced to the relativistic Toda lattice
equation in the rational form{

rnt = rn

sn−1
− rn

sn
,

snt = rn+1
sn+1

− rn

sn−1
.

In section 5, we establish the Hamiltonian structures and construct the discrete bi-
Hamiltonian formulation for the positive and negative discrete integrable couplings obtained,
by means of the discrete variational identity, which is constructed through a non-degenerate
symmetric bilinear form. Then, it is shown that the discrete Hamiltonian systems obtained
have an infinite sequence commuting conserved functionals. Therefore, they are all Liouville
integrable. Finally, in section 6, there are some conclusions and remarks.

2. The relativistic Toda lattice hierarchies

In this section, we derive briefly the relativistic Toda lattice hierarchies, both the polynomial
form and rational form, from the same matrix eigenvalue problem (9) [10]. From the stationary
discrete zero-curvature equation

(EYn)�n − �nYn = 0, (13)

with

�n =
∞∑

m=0

(
a(m)

n λ b(m)
n

c(m)
n −a(m)

n λ

)
λ2m−1,

we obtain the initial relation(
a

(0)
n+1 − a(0)

n

) = c
(0)
n+1 − rb(0)

n , b
(0)
n+1 = 0, c(0)

n = 0, (14)

and the recursion relation(
a

(m+1)
n+1 − a(m+1)

n

) = c
(m+1)
n+1 − rnb

(m+1)
n − sn

(
a

(m)
n+1 − a(m)

n

)
, m � 0,

b
(m+1)
n+1 = −snb

(m)
n+1 − (

a(m)
n + a

(m)
n+1

)
, m � 0,

c(m)
n = rnb

(m)
n+1, m � 0.

(15)

In equation (15), we take the initial values

a(0)
n = − 1

2 , b(0)
n = 0.

Then, the recursion relation (15) uniquely determines a(m)
n , b(m)

n , c(m)
n ,m � 1 [10]. For

instance, we have

a(1)
n = rn, b(1)

n = 1, c(1)
n = rn, a(2)

n = −rnrn+1 − rnrn−1 − r2
n − rnsn − rnsn−1,

b(2)
n = −rn − rn−1 − sn−1, c(2)

n = −rnsn − r2
n − rnrn+1, . . . .

Now let us introduce the temporal eigenvalue problems

ϕntm = V (m)
n ϕn =

⎛
⎜⎜⎝

m∑
i=0

a(i)
n λ2m−2i + b(m+1)

n

m∑
i=0

b(i)
n λ2m−2i+1

m∑
i=0

c(i)
n λ2m−2i+1 −

m∑
i=0

a(i)
n λ2m−2i

⎞
⎟⎟⎠ ϕn, m � 0. (16)

The corresponding discrete zero-curvature equations (i.e. the compatibility conditions of
equations (9) and (16)) are

Yntm = (
EV (m)

n

)
Yn − YnV

(m)
n , m � 0, (17)
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which give rise to the hierarchy of the relativistic Toda lattice equations in polynomial form:{
rntm = c(m+1)

n − rnb
(m+1)
n , m � 0,

sntn = sn

(
a(m)

n − a
(m)
n+1

)
, m � 0.

(18)

In particular, when m = 1, equation (18) becomes the relativistic Toda lattice equations in
polynomial form, i.e. equation (6).

Next, we are going to derive the corresponding rational-type integrable lattice hierarchy
from the same eigenvalue problem (9). We solve

(EYn)
�

�n − �

�nYn = 0, (19)

where

�

�n =
(

�

an

�

bn
�

cn −�

an

)

with
�

an = ∑∞
m=0

�

an
(m)λ2m,

�

bn = ∑∞
m=0

�

bn
(m)λ2m−1 and

�

cn = ∑∞
m=0

�

cn
(m)λ2m−1. From

equation (19), we have the initial relation

�

an+1
(0) − �

an
(0) = 0,

�

bn+1
(0) = 0,

�

cn
(0) = 0, (20)

and the recursion relation

sn

(
�

an+1
(m+1) − �

an
(m+1)

) = �

cn+1
(m+1) − rn

�

bn
(m+1) − (

a
(m)
n+1 − a(m)

n

)
, m � 0,

sn

�

bn+1
(m+1) = −b

(m)
n+1 − (

a(m)
n + a

(m)
n+1

)
, m � 0,

c(m)
n = rnb

(m)
n+1, m � 0.

(21)

We choose the initial values
�

an
(0) = − 1

2 ,
�

bn
(0) = 0.

Then, equation (19) has a unique solution
�

�n determined by equations (20) and (21). The first
few quantities are given as follows:

�

an
(1) = rn

sn−1sn

,
�

bn
(1) = 1

sn−1
,

�

cn
(1) = rn

sn

, . . . .

We introduce following auxiliary eigenvalue problems associated with the eigenvalue problem
(9):

ϕntm = �

V n
(m)ϕn =

⎛
⎜⎜⎝

m∑
i=0

�

an
(i)λ−2m+2i + sn−1b

(m+1)
n +

�

an−1
(m)

m∑
i=0

�

bn
(i)λ−2m+2i−1

m∑
i=0

�

cn
(i)λ−2m+2i−1 −

m∑
i=0

�

an
(i)λ−2m+2i +

�

an
(m)

⎞
⎟⎟⎠ ϕn,

m � 0. (22)

At this time, the compatibility conditions of equations (9) and (22) read

Yntm = (
E

�

V n
(m)

)
Yn − Yn

�

V n
(m), m � 0. (23)

Equation (23) yields the hierarchy of the relativistic Toda lattice equations in rational form:{
rtm = rn

�

bn
(m) − �

cn
(m), m � 0,

sntm = sn

(
�

an+1
(m) − �

an
(m)

)
, m � 0.

(24)

Following [10], we have the following conception.
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Definition 1. Assume that the lattice hierarchy (1) has the Lax pair (3) and (4). If the Lax
operators V (m)

n , m � 0, only include the positive powers of the eigenvalue λ, the lattice
hierarchy (1) is called the positive integrable hierarchy. In contrast, if the Lax operators
V (m)

n , m � 0, only include the negative powers of the eigenvalue λ, the lattice hierarchy (1)
is called the negative integrable hierarchy.

According to the above definition, we know that the hierarchy (18) of the relativistic Toda
lattice equations in polynomial form is a positive integrable hierarchy, and the hierarchy (24)
of the relativistic Toda lattice equations in rational form is a negative integrable hierarchy.

3. The positive integrable coupling hierarchy

In this section, we shall deduce the hierarchy of positive integrable lattice systems from
the eigenvalue problem (10). To this end, we first solve the following stationary discrete
zero-curvature equation:

(E�n)Un − Un�n = �n+1Un − Un�n = 0, (25)

with

�n =

⎛
⎜⎜⎝

an bn en fn

cn −an gn −en

0 0 an bn

0 0 cn −an

⎞
⎟⎟⎠ .

Equation (25) implies

(an+1 − an)λ
2 + sn(an+1 − an) − cn+1λ + rnbnλ = 0

bn+1λ
2 = −snbn+1 − (an + an+1)λ,

cnλ
2 = −sncn − rn(an + an+1)λ,

(en+1 − en)λ
2 = gn+1λ − rnfnλ + sn(en − en+1) − vnbnλ + wn(an − an+1),

(26)

fn+1λ
2 = −snfn+1 − bn+1wn − (en + en+1)λ,

gnλ
2 = −sngn − rn(en + en+1)λ − vn(an + an+1)λ − wncn.

First of all, we discuss the locality of the solution of equation (25).

Proposition 1. If �n solves equation (25), then
(
E

(
�2

n

)) − �2
n = 0.

Proof. Because Un is invertible, then, from equation (25), we have

(E�n) = Un�nU
−1
n .

Further (
E

(
�2

n

) = Un�
2
nU

−1
n .

Hence, (
E

(
�2

n

) − �2
n = Un�

2
nU

−1
n − �2

n.

A direct calculation shows

Un�
2
n = �2

nUn.

So, we have

E
(
�2

n

) − �2
n = D

(
�2

n

) = 0. �

6
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From the substitution of

an =
∞∑

m=0
a(m)

n λ−2m, bn =
∞∑

m=0
b(m)

n λ−2m+1, cn =
∞∑

m=0
c(m)
n λ−2m+1,

en =
∞∑

m=0
e(m)
n λ−2m, fn =

∞∑
m=0

f (m)
n λ−2m+1, gn =

∞∑
m=0

g(m)
n λ−2m+1,

into equations (26), we can get the initial requirement(
a

(0)
n+1 − a(0)

n

) = c
(0)
n+1 − rnb

(0)
n , b

(0)
n+1 = 0, c(0)

n = 0,(
e
(0)
n+1 − e(0)

n

) = g
(0)
n+1 − rnf

(0)
n , f

(0)
n+1 = 0, g(0)

n = 0,
(27)

and the recursion relation(
a

(m+1)
n+1 − a(m+1)

n

) = c
(m+1)
n+1 − rnb

(m+1)
n + sn

(
a(m)

n − a
(m)
n+1

)
, m � 0,

b
(m+1)
n+1 = −snb

(m)
n+1 − (

a(m)
n + a

(m)
n+1

)
, m � 0,

c(m+1)
n = −snc

(m)
n − rn

(
a(m)

n + a
(m)
n+1

)
, m � 0,(

e
(m+1)
n+1 − e(m+1)

n

) = g
(m+1)
n+1 − rnf

(m+1)
n + sn

(
e(m)
n − e

(m)
n+1

) − vnb
(m+1)
n + wn

(
a(m)

n − a
(m)
n+1

)
,

m � 0,

f
(m+1)
n+1 = −snf

(m)
n+1 − wnb

(m)
n+1 − (

e(m)
n + e

(m)
n+1

)
, m � 0,

g(m+1)
n = −sng

(m)
n − rn

(
e(m)
n + e

(m)
n+1

) − vn

(
a(m)

n + a
(m)
n+1

) − wnc
(m)
n , m � 0.

(28)

We choose the initial data

a(0)
n = − 1

2 , b(0)
n = 0, e(0)

n = − 1
2 , f (0)

n = 0.

From equation (28), we see that b(m+1)
n and c(m+1)

n can be determined locally by a(m)
n , b(m)

n and
c(m)
n ,m � 0, and f (m+1)

n and g(m+1)
n can be determined locally by a(m)

n , b(m)
n , c(m)

n , e(m)
n , f (m)

n ,

g(m)
n ,m � 0. In order to obtain a(m+1)

n and e(m+1)
n from the first and fourth equations in

equation (28), we need to use operator D−1 = (E − 1)−1 to solve the relevant difference
equations. In what follows, we will show that a(m+1)

n and e(m+1)
n may be deduced by an

algebraical method rather than by solving the difference equations. The fact

�2
n =

⎛
⎜⎜⎝

a2
n + bncn 0 2anen + cnfn + bngn 0

0 a2
n + bncn 0 2anen + cnfn + bngn

0 0 a2
n + bncn 0

0 0 0 a2
n + bncn

⎞
⎟⎟⎠ ,

and proposition 1 yield

a2
n + bncn = γ1(t), 2anen + cnfn + bngn = γ2(t), (29)

with γ1(t) and γ2(t) being the arbitrary functions of time variable t only. We then obtain two
recursion relations for a(m+1)

n and e(m+1)
n :

a(m+1)
n =

m∑
i=1

a(i)
n a(m−i+1)

n +
m+1∑
i=1

b(i)
n c(m−i+2)

n − γ1(t), m � 1,

e(m+1)
n =

m∑
i=1

a(i)
n e(m−i+1)

n +
m+1∑
i=1

c(i)
n f (m−i+2)

n +
m+1∑
i=1

b(i)
n g(m−i+2)

n − a(m+1)
n − γ2(t), m � 1.

(30)

Further, we select γ1(t) = γ2(t) = 0. According to the recursion relations (28) and (30), and
through the mathematical induction, we obtain that a(m)

n , b(m)
n , c(m)

n , e(m)
n , f (m)

n , g(m)
n , m � 1,

are all local. To sum up the above statement, it turns out that all lattice functions a(m)
n , b(m)

n , c(m)
n ,

7
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e(m)
n , f (m)

n , g(m)
n , m � 1, are difference polynomials in the dependent variables rn, sn, vn and

wn. The first few quantities are given by

a(1)
n = rn, b(1)

n = 1, c(1)
n = rn, e(1)

n = rn + vn, f (1)
n = 1, g(1)

n = rn + vn,

a(2)
n = −r2

n − rnsn − rnrn+1 − rnrn−1 − rnsn−1, b(2)
n = −rn−1 − rn − sn−1,

c(2)
n = −r2

n − rnsn − rnrn+1,

e(2)
n = −r2

n − rnrn+1 − rnrn−1 − rn(2vn − vn+1 − wn − wn−1 − sn−1 − vn−1) − rn−1vn − snvn

− rn+1vn − vnsn−1,

f (2)
n = −rn−1 − rn − vn−1 − vn − sn−1 − wn−1,

g(2)
n = −rn(rn + sn + rn+1 + 2vn + wn + vn+1) − vnsn − rn+1vn, . . . .

Let us set

W(m)
n ≡

m∑
i=0

⎛
⎜⎜⎝

a(i)
n b(i)

n λ e(i)
n f (i)

n λ

c(i)
n λ −a(i)

n g(i)
n λ −e(i)

n

0 0 a(i)
n b(i)

n λ

0 0 c(i)
n λ −a(i)

n

⎞
⎟⎟⎠λ2m−2i , m � 0, (31)

and take a modification


(m)
n =

⎛
⎜⎜⎝

b(m+1)
n 0 f (m+1)

n 0
0 0 0 0
0 0 b(m+1)

n 0
0 0 0 0

⎞
⎟⎟⎠ .

Then we define the auxiliary Lax operators

W [m]
n = W(m)

n + 
(m)
n , m � 0. (32)

For all m � 0, we introduce the following auxiliary eigenvalue problems:

ϕntm
= W [m]

n ϕn, m � 0. (33)

Then the compatibility conditions of equations (10) and (33) are

Untm
= (

EW [m]
n

)
Un − UnW

[m]
n , m � 0, (34)

which give rise to the following hierarchy of integrable lattice equations:

rntm = c(m+1)
n − rnb

(m+1)
n , m � 0, (35a)

sntm = sn

(
a(m)

n − a
(m)
n+1

)
, m � 0, (35b)

vnt = g(m+1)
n − rnf

(m+1)
n − vnb

(m+1)
n , m � 0, (35c)

wntm = sn

(
e(m)
n − e

(m)
n+1

)
+ wn

(
a(m)

n − a
(m)
n+1

)
, m � 0. (35d)

It is easy to find that equations (35a) and (35b) constitute the hierarchy (18) of the relativistic
Toda lattice equations in polynomial form, and the Lax operators (32) only involve positive
powers of the eigenvalue λ. Therefore, (35) is a positive integrable coupling hierarchy
associated with the eigenvalue problem (10). It is easy to see that the first nonlinear lattice
equation in (35), when m = 1, under t1− > t , is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rnt1 = rn(rn−1 − rn+1) + rn(sn−1 − sn),

snt1 = sn(rn − rn+1),

vnt1 = rn(sn−1 − sn + wn−1 − wn + rn−1 − rn+1 + vn−1 − vn+1)

+ vn(rn−1 − rn+1 + sn−1 − sn),

wnt1 = sn(rn + vn − rn+1 − vn+1) + wn(rn − rn+1).

(36)

Clearly, equation (36) is an integrable coupling of the relativistic Toda lattice model (6) in
polynomial form.

8
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4. The negative integrable coupling hierarchy

Now, we would like to derive the negative integrable lattice hierarchy associated with the
eigenvalue problem (10). To this end, we consider another stationary discrete zero-curvature
equation

(E
�

�n)Un − Un

�

� = 0, (37)

where

�

�n =
∞∑

m=0

⎛
⎜⎜⎝

A(m)
n λ B(m)

n H (m)
n λ F (m)

n

C(m)
n −A(m)

n λ G(m)
n −H(m)

n λ

0 0 A(m)
n λ B(m)

n

0 0 C(m)
n −A(m)

n λ

⎞
⎟⎟⎠λ2m−1.

Solving (37), we have the initial relation

sn

(
A

(0)
n+1 − A(0)

n

) = rnB
(0)
n − C

(0)
n+1, snB

(0)
n+1 = 0, C(0)

n = rnB
(0)
n+1,

sn

(
H

(0)
n+1 − H(0)

n

) = −vnB
(0)
n+1 − rnF

(0)
n + G(0)

n + wn

(
A(0)

n − A
(0)
n+1

)
,

snF
(0)
n+1 = −wnB

(0)
n+1, snG

(0)
n = −wnC

(0)
n ,

(38)

and the recursion relation
sn

(
A

(m+1)
n+1 − A(m+1)

n

) = rnB
(m+1)
n − C

(m+1)
n+1 +

(
A(m)

n − A
(m)
n+1

)
, m � 0,

snB
(m+1)
n+1 = −B

(m)
n+1 − (

A(m)
n + A

(m)
n+1

)
,

snC
(m+1)
n = −C(m)

n − rn

(
A(m)

n + A
(m)
n+1

)
,

sn

(
H

(m+1)
n+1 − H(m+1)

n

) = −vnB
(m+1)
n − rnF

(m+1)
n + G

(m+1)
n+1 +

(
H(m)

n − H
(m)
n+1

)
+ wn

(
A(m+1)

n − A
(m+1)
n+1

)
, m � 0,

snF
(m+1)
n+1 = −F

(m)
n+1 − wnB

(m+1)
n+1 − (

H(m)
n + H

(m)
n+1

)
, m � 0,

snG
(m+1)
n = −G(m)

n − vn

(
A(m)

n + A
(m)
n+1

) − wnC
(m+1)
n − rn

(
H(m)

n + H
(m)
n+1

)
, m � 0.

(39)

We choose the initial values satisfying the above initial relation (38):

A(0)
n = − 1

2 , B(0)
n = 0, H (0)

n = − 1
2 , F (0)

n = 0.

From proposition 1, in the same way as for the recursion relations (30), we have

A(m+1)
n =

m∑
i=1

A(i)
n A(m+1−i)

n +
m+1∑
i=1

B(i)
n C(m+2−i)

n − γ3(t),

H (m+1)
n = 2

m∑
i=1

A(i)
n H (m+1−i)

n +
m+1∑
i=1

C(i)
n F (m+1−i)

n +
m∑

i=1

B(i)
n G(m+1−i)

n − A(m+1)
n − γ4(t).

(40)

In equation (40), γ3(t) and γ4(t) are arbitrary functions. If γ3(t) = γ4(t) = 0 is chosen, then
all lattice functions A(m)

n , B(m)
n , C(m)

n ,H (m)
n , F (m)

n , G(m)
n , m � 1 are uniquely determined by

equations (39) and (40). Then, through the mathematical induction, we can obtain that they
are all local, and are just rational functions in the dependent variables rn, sn, vn and wn. In
particular, we have

A(1)
n = rn

snsn−1
, B(1)

n = 1

sn−1
, C(1)

n = rn

sn

,

H (1)
n = − rnwn

s2
nsn−1

+
rn

snsn−1
+

vn

snsn−1
− rnwn−1

snsn−1
,

F (1)
n = 1

sn−1
− wn−1

s2
n−1

, G(1)
n = vn

sn

+
rn

sn

− rnwn

s2
n

, . . . .

9
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Let us write

�

Wn
(m) =

m∑
i=0

⎛
⎜⎜⎝

A(i)
n λ B(i)

n H (i)
n λ F (i)

n

C(i)
n −A(i)

n λ G(i)
n −H(i)

n λ

0 0 A(i)
n λ B(i)

n

0 0 C(i)
n −A(i)

n λ

⎞
⎟⎟⎠λ−2m+2i−1, m � 0,

and select the modification term

�


n
(m) =

⎛
⎜⎜⎜⎝

A
(m)
n−1 − sn−1B

(m+1)
n 0 −F (m)

n − H(m)
n 0

0 A(m)
n 0 H(m)

n

0 0 A
(m)
n−1 − sn−1B

(m+1)
n 0

0 0 0 A(m)
n

⎞
⎟⎟⎟⎠ .

Then we introduce auxiliary Lax operators

�

Wn
[m] = �

Wn
(m) +

�


n
(m), m � 0. (41)

Through a straightforward calculation, we find that

Untm = (
E

�

Wn
[m]

)
Un − Un

�

Wn
[m] (42)

implies the hierarchy of integrable lattice systems

rntm = snC
(m+1)
n + rnA

(m)
n+1 − rnsn−1B

(m+1)
n − rnA

(m)
n−1 = −C(m)

n + rnB
(m)
n , m � 0, (43a)

sntm = sn

(
A

(m)
n+1 − A(m)

n

) = −(
A

(m−1)
n+1 − A(m−1)

n

) − rnB
(m)
n + C

(m)
n+1, m � 0, (43b)

vntm = snG
(m+1)
n + wnC

(m+1)
n + vnA

(m)
n+1 − vn

(
A

(m)
n−1 + sn−1B

(m+1)
n

)
+ rn

(
F (m)

n + H(m)
n + H

(m)
n+1

)
,

m � 0, (43c)

wntm = wn

(
A

(m)
n+1 − A(m)

n

)
+ sn

(
H

(m)
n+1 − H(m)

n

)
, m � 0. (43d)

Obviously, equations (43a) and (43b) form the hierarchy (24) of the relativistic Toda lattice
equations in rational form, and the Lax operators (41) only involve negative powers of the
eigenvalue λ. Thus, (43) is a negative integrable coupling hierarchy associated with the
eigenvalue problem (10).

It is easy to verify that the first nonlinear lattice system in (43), when m = 1, under
t1− > t , is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rnt = rn

sn−1
− rn

sn

,

snt = rn+1

sn+1
− rn

sn−1
,

vnt = rn

sn−1
− rn

sn

+ rn

(
wn

s2
n

− wn−1

s2
n−1

)
,

wnt = rn+1

sn+1
− rn

sn−1
+

vn+1

sn+1
− vn

sn−1
+

rnwn−1

s2
n−1

− rn+1wn+1

s2
n+1

.

According to equation (8), we know that this is an integrable coupling of the relativistic Toda
lattice model (7) in rational form.
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5. Hamiltonian structures for the integrable coupling hierarchies

In this section, we are going to establish the Hamiltonian structures for the integrable couplings
(35) and (43) by means of the discrete variational identity.

First, let us introduce some concepts for further discussion. The variational derivative,
the Gateaux derivative and the inner product are defined, respectively, by

δH̃n

δun

=
∑
m∈Z

E−m

(
∂Hn

∂un+m

)
, J ′(un)[vn] = ∂

∂ε
J (un + εvn)|ε=0,

〈fn, gn〉 =
∑
n∈Z

(fn, gn)R4 ,

where fn, gn are required to rapidly vanish at infinity, and (fn, gn)R4 denotes the standard inner
product of fn and gn in the Euclidean space R4.

An operator J is called a discrete Hamiltonian operator, if J is a skew-symmetric operator
satisfying the Jacobi identity [7, 10], i.e.

J = −J ∗,
〈J ′(un)[Jfn]gn, hn〉 + Cycle(fn, gn, hn) = 0.

In what follows, we introduce a non-degenerate symmetric bilinear form and present related
discrete variational identity. Let us consider a set of matrices

ω1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , ω2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,

ω3 =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎟⎠ , ω4 =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

ω5 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , ω6 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

ω7 =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , ω8 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

It is easy to see that

G = span{ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}, G1 = span{ω1, ω2, ω3, ω4},
G2 = span{ω5, ω6, ω7, ω8}
construct three Lie algebras. Then, we can obtain three corresponding loop algebras
G̃, G̃1, G̃2. For example, the bases of the loop algebra G̃ are

ωi(m) = λmωi, i = 1, 2, . . . 8, m ∈ Z,

and the commutation operation in the G̃ is as follows:

[ωi(m), ωj (n)] = [ωi, ωj ]λm+n, i = 1, 2, . . . , 8, n, m ∈ Z.

11
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It is apparent that G = G1 ⊕ G2, [G1,G2] ≡ G1G2 − G2G1 ⊆ G2. Then we obtain that G̃ is
a semi-direct sum of G̃1 and G̃2 [21–24]. Obviously, for every �n ∈ G̃, �n is of the following
form:

�n =
(

Qn Zn

0̃ Qn

)
,

where Qn,Zn are 2 × 2 matrices, 0̃ is a 2 × 2 zero matrix.
Following [24], we define a map

ξ : G̃ → R8, A → (a1, a2, . . . a8)
T , A =

⎛
⎜⎜⎝

a1 a2 a5 a6

a3 a4 a7 a8

0 0 a1 a2

0 0 a3 a4

⎞
⎟⎟⎠ , A ∈ G̃. (44)

Set

A = a1ω1 + a2ω2 + a3ω3 + a4ω4 + a5ω5 + a6ω6 + a7ω7 + a8ω8 ∈ G̃,

B = b1ω1 + b2ω2 + b3ω3 + b4ω4 + b5ω5 + b6ω6 + b7ω7 + b8ω8 ∈ G̃.

Then

ξ(A) = a, ξ(B) = b, (45)

where

a = (a1, a2, a3, a4, a5, a6, a7, a8)
T , b = (b1, b2, b3, b4, b5, b6, b7, b8)

T ∈ R8.

The commutator [., .] on R8 can be denoted by

[a, b]TR8 = aT R(b), a, b ∈ R8, (46)

where

R(b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b2 −b3 0 0 b6 −b7 0
b3 b4 − b1 0 −b3 b7 b8 − b5 0 −b7

−b2 0 b1 − b4 b2 −b6 0 b5 − b8 b6

0 −b2 b3 0 0 −b6 b7 0
0 0 0 0 0 b2 −b3 0
0 0 0 0 b3 b4 − b1 0 −b3

0 0 0 0 −b2 0 b1 − b4 b2

0 0 0 0 0 −b2 b3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We introduce the invertible matrix

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

It is easy to verify that F meets

FT = F,

12
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and

F(R(b))T = −R(b)F, for all b ∈ R8.

Therefore, we obtain a non-degenerate symmetric bilinear form on R8:

〈a, b〉R8 = aT Fb. (48)

Now, a non-degenerate bilinear form on G̃ may be presented by

〈A,B〉G̃ = 〈ξ(A), ξ(B)〉R8

= (a1, a2, a3, a4, a5, a6, a7, a8)F (b1, b2, b3, b4, b5, b6, b7, b8)
T . (49)

As in [24], in virtue of the non-degenerate bilinear form (49), we can obtain the discrete
variational identity

δ

δun

∑
n∈Z

〈(
�nU

−1
n

)
,
∂Un

∂λ

〉
G̃

= λ−τ ∂

∂λ
λτ

〈(
�nU

−1
n

)
,
∂Un

∂un

〉
G̃

. (50)

where un = (rn, sn, vn, wn)
T , τ is a constant to be fixed.

First, we establish the Hamiltonian structure for the positive integrable coupling hierarchy
(35). In our case,〈(

�nU
−1
n

)
,
∂Un

∂λ

〉
G̃

= rngnλ
2 − rnsngn − vncnλ

2 + snvncn + rnwn

r2
nλ2

,〈(
�nU

−1
n

)
,
∂Un

∂rn

〉
G̃

= rnen − vnan

r2
n

,

〈(
�nU

−1
n

)
,
∂Un

∂sn

〉
G̃

= rngn − vncn

r2
nλ

,〈(
�nU

−1
n

)
,
∂Un

∂vn

〉
G̃

= an

rn

,

〈(
�nU

−1
n

)
,
∂Un

∂wn

〉
G̃

= cn

rnλ
.

The substitution of

an =
∞∑

m=0

a(m)
n λ−2m, bn =

∞∑
m=0

b(m)
n λ−2m+1, cn =

∞∑
m=0

c(m)
n λ−2m+1,

en =
∞∑

m=0

e(m)
n λ−2m, gn =

∞∑
m=0

g(m)
n λ−2m+1

into equation (50), and comparing the coefficients of λ−2m−1, we get⎛
⎜⎜⎜⎜⎜⎝

δ
δrn

δ
δsn

δ

δvn

δ
δwn

⎞
⎟⎟⎟⎟⎟⎠

∑
n∈Z

(
(snvnc

(m)
n + rnwnc

(m)
n + rng

(m+1)
n

r2
n

− sng
(m)
n + vnc

(m+1)
n

r2
n

)

= (τ − 2m)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m)
n −vna

(m)
n

r2
n

rng
(m)
n −vnc

(m)
n

r2
n

a
(m)
n

rn

c
(m)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, m � 1. (51)
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When m = 0 in (51), we find that τ = 0. So we obtain⎛
⎜⎜⎜⎜⎜⎝

δ
δrn

δ
δsn

δ
δvn

δ
δwn

⎞
⎟⎟⎟⎟⎟⎠

∑
n∈Z

(
sng

(m)
n + vnc

(m+1)
n

2mr2
n

− (snvnc
(m)
n + rnwnc

(m)
n + rng

(m+1)
n

2mr2
n

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m)
n −vna

(m)
n

r2
n

rng
(m)
n −vnc

(m)
n

r2
n

a
(m)
n

rn

c
(m)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, m � 1. (52)

Set

H̃ (m)
n =

∑
n∈Z

(
sng

(m)
n + vnc

(m+1)
n

2mr2
n

− (snvnc
(m)
n + rnwnc

(m)
n + rng

(m+1)
n

2mr2
n

)
, m � 1. (53)

We get

δH̃ (m)
n

δun

=
(

rne
(m)
n − vna

(m)
n

r2
n

,
rng

(m)
n − vnc

(m)
n

r2
n

,
a(m)

n

rn

,
c(m)
n

rn

)T

, m � 1. (54)

From equation (35), we have

⎛
⎜⎜⎜⎜⎝

c(m+1)
n − rnb

(m+1)
n

sn

(
a(m)

n − a
(m)
n+1

)
g(m+1)

n − rnf
(m+1)
n − vnb

(m+1)
n

sn

(
e(m)
n − e

(m)
n+1

)
+ wn

(
a(m)

n − a
(m)
n+1

)

⎞
⎟⎟⎟⎟⎠ = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m+1)
n −vna

(m+1)
n

r2
n

rng
(m+1)
n −vnc

(m+1)
n

r2
n

a
(m+1)
n

rn

c
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

� =

⎛
⎜⎜⎝

0 0 0 rn(1 − E−1)

0 0 −(1 − E)rn rnE
−1 − Ern

0 rn(1 − E−1) 0 vn(1 − E−1)

−(1 − E)rn rnE
−1 − Ern −(1 − E)vn (vnE

−1 − Evn)

⎞
⎟⎟⎠ . (55)

Using (28) and (30), it is found that⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m+1)
n −vna

(m+1)
n

r2
n

rng
(m+1)
n −vnc

(m+1)
n

r2
n

a
(m+1)
n

rn

c
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m)
n −vna

(m)
n

r2
n

rng
(m)
n −vnc

(m)
n

r2
n

a
(m)
n

rn

c
(m)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, m � 0,

where the operator � is given by

� =

⎛
⎜⎜⎜⎝

�11
1
rn

(1 − E)−1rn(1 − E−1)sn − sn �13 �14

−(1 + E)rn −sn −(1 + E)vn −wn

0 0 �33
1
rn

(1 − E)−1rn(1 − E−1)sn − sn

0 0 −(1 + E)rn −sn

⎞
⎟⎟⎟⎠ ,

(56)
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in which

�11 = �33 = −(1 + E)rn +
1

rn

(1 − E)−1rn(E − E−1)rn − 1

rn

(1 − E)−1sn(1 − E)rn.

�13 = −vn

r2
n

(1 − E−1)rn(E − E−1)rn + (1 − E−1)−1 vn

rn

(E − E−1)rn

+
vn

rn

(1 − E)−1sn(1 − E)rn − (1 + E)vn − (1 − E−1)−1 vn

rn

(E − E−1)rn

+
1

rn

(1 − E)−1vn(E − E−1)rn +
1

rn

(1 − E)−1rn(E − E−1)vn

− 1

rn

(1 − E)−1wn(1 − E)rn − 1

rn

(1 − E)−1sn(1 − E)vn.

�14 = −vn

r2
n

(1 − E)−1rn(1 − E−1)sn − wn +
1

rn

(1 − E)−1rn(1 − E−1)wn

+
1

rn

(1 − E)−1vn(1 − E−1)sn.

Set

χ = ��.

It is easy to verify that

χ =

⎛
⎜⎜⎝

0 0 −rn(E − E−1)rn −rn(1 − E−1)sn

0 0 sn(1 − E)rn 0
−rn(E − E−1)rn −rn(1 − E−1)sn χ33 χ34

sn(1 − E)rn 0 χ43 0

⎞
⎟⎟⎠ , (57)

where

χ33 = −rn(E − E−1)vn − vn(E − E−1)rn, χ34 = −rn(1 − E−1)wn − vn(1 − E−1)sn,

χ43 = wn(1 − E)rn + sn(1 − E)vn.

Proposition 2. The operator � in equation (55) is a discrete Hamiltonian operator.

Proof. Obviously, the operator � is a skew-symmetric operator, i.e.

� = −�∗.

Moreover, we can prove that the operator � satisfies the Jacobi identity

〈�′(un)[�fn]gn, hn〉 + Cycle(fn, gn, hn) = 0.

The concrete check is given in the appendix. �

Furthermore, we have following assertions.

Proposition 3. The operator χ is also a discrete Hamiltonian operator. The operators �

and χ constitute a pair of discrete Hamiltonian operators.

Proof. From a direct but complicated verification, we can obtain that:

(i) the operator χ is a skew-symmetric operator and satisfies the Jacobi identity;
(ii) for an arbitrary real number α, β, α� + βχ is still a discrete Hamiltonian operator.

Namely, the operators � and χ are compatible.
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Therefore, the operators � and χ constitute a pair of discrete Hamiltonian
operators. �

At this time, we can rewrite the integrable coupling systems (35) in the following
Hamiltonian forms:

untm
=

⎛
⎜⎜⎝

rn

sn

vn

wn

⎞
⎟⎟⎠

tm

= �
δH̃ (m)

n

δun

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rne
(m+1)
n −vna

(m+1)
n

r2
n

rng
(m+1)
n −vnc

(m+1)
n

r2
n

a
(m+1)
n

rn

c
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ��m−1 δH̃ (0)
n

δun

, m > 0. (58)

Further, we can show that the integrable coupling systems (35) have discrete bi-Hamiltonian
structures [7, 11]

untm
=

⎛
⎜⎜⎝

rn

sn

vn

wn

⎞
⎟⎟⎠

tm

= �
δH̃ (m)

n

δun

= χ
δH̃ (m)

n

δun

, m � 1. (59)

Therefore, equation (35) is a hierarchy of discrete bi-Hamiltonian systems.
Based on a given Hamiltonian operator �, we can define a corresponding Poisson bracket

[11, 12]

{fn, gn}� =
〈
δfn

δun

,�
δgn

δun

〉
=

∑
n∈Z

(
δfn

δun

,�
δgn

δun

)
R4

. (60)

Proposition 4. {H̃m}m�1defined by (53) forms an infinite set of conserved functionals of the
integrable coupling hierarchy (35), and H̃m, m � 1, are in involution in pairs with respect to
the Poisson (60).

Proof. We can find that

χ∗ = −χ.

Namely

(��)∗ = −(��),

and then

�∗� = ��.

Therefore, we have

{
H̃ (m)

n , H̃ (l)
n

}
�

=
〈
δH̃ (m)

n

δun

,�
δH̃ (m)

n

δun

〉
=

〈
�m−1 δH̃ (1)

n

δun

,��l−1 δH̃ (1)
n

δun

〉

=
〈
�m−1 δH̃ (1)

n

δun

,� ∗ ��l−2 δH̃ (1)
n

δun

〉

=
〈
�m δH̃ (1)

n

δun

,��l−2 δH̃ (1)
n

δun

〉
= {

H̃ (m+1)
n , H̃ (l−1)

n

}
�

= · · · = {
H̃ (m+l−1)

n , H̃ (1)
n

}
�

, m, l � 1.

Analogously, we can obtain{
H̃ (l)

n , H̃ (m)
n

}
�

= {
H̃ (m+l−1)

n , H̃ (1)
n

}
�

, m, l � 1.
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Then, we have {
H̃ (m)

n , H̃ (l)
n

}
�

= 0, m, l � 1, (61)

and

(
H̃ (m)

n

)
tl

=
(∑

n∈Z

H(m)
n

)
tl

=
〈
δH̃ (m)

n

δun

, untl

〉
=

〈
δH̃ (m)

n

δun

,�
δH̃ (l)

n

δun

〉

= {
H̃ (m)

n , H̃ (l)
n

}
�

= 0, m, l � 1. (62)

In summary, we arrive at the following result. �

Proposition 5. The integrable couplings in (35) or the discrete Hamiltonian equations in (58)
are all discrete Liouville integrable systems.

Now we substitute �n in the discrete variational identity (50) with
�

�n; then it is found that〈
(

�

�nU
−1
n ),

∂Un

∂λ

〉
G̃

= rnGnλ
2 − rnsnGn − vnCnλ

2 + snvnCn + rnwn

r2
nλ2

,〈(�

�nU
−1
n

)
,
∂Un

∂rn

〉
G̃

= rnHn − vnAn

r2
n

,

〈(�

�nU
−1
n

)
,
∂Un

∂sn

〉
G̃

= rnGn − vnCn

r2
nλ

,〈(�

�nU
−1
n

)
,
∂Un

∂vn

〉
G̃

= An

rn

,

〈(�

�nU
−1
n

)
,
∂Un

∂wn

〉
G̃

= Cn

rnλ
.

Substituting expansions

An =
∞∑

m=0

A(m)
n λ2m, Bn =

∞∑
m=0

B(m)
n λ2m−1, Cn =

∞∑
m=0

C(m)
n λ2m−1,

Hn =
∞∑

m=0

H(m)
n λ2m, Gn =

∞∑
m=0

G(m)
n λ2m−1

into the equation

δ

δun

∑
n∈Z

〈(�

�nU
−1
n

)
,
∂Un

∂λ

〉
G̃

= λ−τ ∂

∂λ
λτ

〈(�

�nU
−1
n

)
,
∂Un

∂un

〉
G̃

we have

δG̃(m)
n

δun

=
(

rnH
(m)
n − vnA

(m)
n

r2
n

,
rnG

(m+1)
n − vnC

(m+1)
n

r2
n

,
A(m)

n

rn

,
C(m+1)

n

rn

)T

, m � 1, (63)

where

G̃(m)
n =

∑
n∈Z

(
rnG

(m)
n + snvnC

(m+1)
n + rnwnC

(m+1)
n

2mr2
n

− rnsnG
(m+1)
n + vnC

(m)
n

2mr2
n

)
.

By using (63) and noting (39) and (40), we have⎛
⎜⎜⎜⎜⎜⎝

snC
(m+1)
n + rnA

(m)
n+1 − rnsn−1B

(m+1)
n − rnA

(m)
n−1

sn

(
A

(m)
n+1 − A(m)

n

)
snG

(m+1)
n + wnC

(m+1)
n + vnA

(m)
n+1 − vn

(
A

(m)
n−1 + sn−1B

(m+1)
n

)
+ rn

(
F (m)

n + H(m)
n + H

(m)
n+1

)
wn

(
A

(m)
n+1 − A(m)

n

)
+ sn

(
H

(m)
n+1 − H(m)

n

)

⎞
⎟⎟⎟⎟⎟⎠
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= χ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rnH
(m)
n −vnA

(m)
n

r2
n

rnG
(m+1)
n −vnC

(m+1)
n

r2
n

A
(m)
n

rn

C
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, from (39) and (40), we can find that⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rnH
(m)
n −vnA

(m)
n

r2
n

rnG
(m+1)
n −vnC

(m+1)
n

r2
n

A
(m)
n

rn

C
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rnH
(m−1)
n −vnA

(m−1)
n

r2
n

rnG
(m)
n −vnC

(m)
n

r2
n

A
(m−1)
n

rn

C
(m)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, m � 1,

where

� =

⎛
⎜⎜⎜⎝

− 1
rn

(1 − E)−1 1
sn

(1 − E)rn �12 �13 �14
1
sn

(1 + E)(1 − E)−1 1
sn

(1 − E)rn �22 �23 �24

0 0 − 1
rn

(1 − E)−1 1
sn

(1 − E)r �34

0 0 1
sn

(1 + E)(1 − E)−1 1
sn

(1 − E)rn �44

⎞
⎟⎟⎟⎠ ,

in which

�12 = �34 = 1

rn

(1 − E)−1 1

sn

(rnE
−1 − Ern),

�22 = �44 = 1

sn

− 1

sn

(1 + E)(1 − E)−1 1

sn

(rnE
−1 − Ern),

�13 = rn(1 − E)−1 wn

sn

(1 − E)rn +
vn

r2
n

(1 − E)−1 1

sn

(1 − E)rn − 1

rn

(1 − E)−1 1

sn

(1 − E)vn,

�14 = − 1

rn

(1 − E)−1 wn

s2
n

(rnE
−1 − Ern) − vn

r2
n

(1 − E)−1 1

s2
n

(rnE
−1 − Ern)

+
1

rn

(1 − E)−1 1

s2
n

(vnE
−1 − Evn),

�23 = −wn

s2
n

(1 + E)(1 − E)−1 1

sn

(1 − E)rn − 1

sn

(1 + E)(1 − E)−1 wn

s2
n

(1 − E)rn

+
1

sn

(1 + E)(1 − E)−1 1

sn

(1 − E)vn,

�24 = wn

s2
n

− wn

s2
n

(1 + E)(1 − E)−1 rn

sn

(1 − E−1) +
wn

s2
n

(1 + E)(1 − E)−1 1

sn

(1 − E)rn

+
1

sn

(1 + E)(1 − E)−1 rnwn

s2
n

(1 − E−1)

+
1

sn

(1 + E)(1 − E)−1 wn

s2
n

(1 − E)rn +
1

sn

(1 + E)(1 − E)−1 vn

sn

(1 − E−1)

− 1

sn

(1 + E)(1 − E)−1 1

s2
n

(1 − E)vn.

It is easy to verify that

� = χ�, � = �−1.
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Consequently, we have⎛
⎜⎜⎜⎜⎜⎝

snC
(m+1)
n + rnA

(m)
n+1 − rnsn−1B

(m+1)
n − rnA

(m)
n−1

sn

(
A

(m)
n+1 − A(m)

n

)
snG

(m+1)
n + wnC

(m+1)
n + vnA

(m)
n+1 − vn

(
A

(m)
n−1 + sn−1B

(m+1)
n

)
+ rn

(
F (m)

n + H(m)
n + H

(m)
n+1

)
wn

(
A

(m)
n+1 − A(m)

n

)
+ sn

(
H

(m)
n+1 − H(m)

n

)

⎞
⎟⎟⎟⎟⎟⎠

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rnH
(m−1)
n −vnA

(m−1)
n

r2
n

rnG
(m)
n −vnC

(m)
n

r2
n

A
(m−1)
n

rn

C
(m)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, we can obtain the discrete bi-Hamiltonian forms for equation (43):

untm
=

⎛
⎜⎜⎝

rn

sn

vn

wn

⎞
⎟⎟⎠

tm

= χ
δG̃(m)

n

δun

= �
δG̃(m−1)

n

δun

, m � 1. (64)

And we have the following recursion structures:

untm
=

⎛
⎜⎜⎝

rn

sn

vn

wn

⎞
⎟⎟⎠

tm

= χ
δG̃(m)

n

δun

= χ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rnH
(m)
n −vnA

(m)
n

r2
n

rnG
(m+1)
n −vnC

(m+1)
n

r2
n

A
(m)
n

rn

C
(m+1)
n

rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= χ�m−1 δG̃(0)
n

δun

, m > 0. (65)

Based on proposition 3, we can obtain the following proposition.

Proposition 6. The integrable couplings in (43) have discrete bi-Hamiltonian structures (64),
and are all Liouville integrable discrete Hamiltonian systems.

6. Conclusions and remarks

In this paper, firstly, we briefly derived the relativistic Toda lattice hierarchies, both the
polynomial form and rational forms. Secondly, we deduced the corresponding positive and
negative integrable coupling hierarchies from a four by four matrix eigenvalue problem.
Thirdly, we presented a pair of discrete Hamiltonian operators, and established the bi-
Hamiltonian structures of the two hierarchies of integrable couplings obtained, by the discrete
variational identity, which is derived from a non-degenerate symmetric bilinear form. Finally,
Liouville integrability of the two integrable coupling hierarchies obtained is proved.

In addition, we are going to focus on the physical applications of integrable coupling
hierarchies (35) and (43), and many other interesting integrability problems, for instance, the
inverse scattering transformation [1], the Darboux transformation [15], the symmetries and
master symmetries [7, 29] and the symmetry constraint [30], in a further investigation.
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Appendix. The proof of the Jacobi identity in proposition 2

We would like to give a detailed check of the Jacobi identities

〈�′(un)[�fn]gn, hn〉 + Cycle(fn, gn, hn) = 0,

in which the operators � are defined by (55).
Assume that

fn = (
f 1

n , f 2
n , f 3

n , f 4
n

)T
, gn = (

g1
n, g

2
n, g

3
n, g

4
n

)T
, hn = (

h1
n, h

2
n, h

3
n, h

4
n

)T

are three arbitrary vector functions, which are required to rapidly vanish at infinity. Here the
Gateaux derivative and the inner product are defined, respectively, by

�′(un)[vn] = ∂

∂ε
�(un + εvn)|ε=0, 〈fn, gn〉 =

∑
n∈Z

(fn, gn)R4 ,

as before. (fn, gn)R4 denotes the standard inner product of fn and gn in the Euclidean space
R4.

First, we can obtain

〈�′(un)[�fn]gn, hn〉 =
∑
n∈Z

((
rnf

4
n g4

nh
1
n − rn

(
E−1f 4

n

)
g4

nh
1
n − rnf

4
n

(
E−1g4

n

)
h1

n

+ rn

(
E−1f 4

n

)(
E−1g4

n

)
h1

n − rnf
4
n g3

nh
2
n + rn

(
E−1f 4

n

)
g3

nh
2
n + (Ern)

(
Ef 4

n

)(
Eg3

n

)
h2

n

− (Ern)f
4
n

(
Eg3

n

)
h2

n + +rnf
4
n

(
E−1g4

n

)
h2

n − rn

(
E−1f 4

n

)(
E−1g4

n

)
h2

n

− (Ern)
(
Ef 4

n

)(
Eg4

n

)
h2

n + (Ern)f
4
n

(
Eg4

n

)
h2

n + rnf
4
n g2

nh
3
n

− rn

(
E−1f 4

n

)
g2

nh
3
n − +rnf

4
n

)(
E−1g2

n

)
h3

n + rn

(
E−1f 4

n

)(
E−1g2

n

)
h3

n

+ rnf
2
n g4

nh
3
n − rn

(
E−1f 2

n

)
g4

nh
3
n + vnf

4
n g4

n)h
3
n − vn

(
E−1f 4

n

)
g4

nh
3
n

− rnf
2
n

(
E−1g4

n

)
h3

n + rn

(
E−1f 2

n

)(
E−1g4

n

)
h3

n − vnf
4
n

(
E−1g4

n

)
h3

n

+vn

(
E−1f 4

n

)(
E−1g4

n

)
h3

n − rnf
4
n g1

nh
4
n + rn

(
E−1f 4

n

)
g1

nh
4
n

+ (Ern)
(
Ef 4

n

)(
Eg1

n

)
h4

n − (Ern)f
4
n

(
Eg1

n

)
h4

n + rnf
4
n

(
E−1g2

n

)
h4

n

− rn

(
E−1f 4

n

)(
E−1g2

n

)
h4

n − (Ern)
(
Ef 4

n

)(
Eg2

n

)
h4

n + (Ern)f
4
n

(
Eg2

n

)
h4

n

− rnf
2
n g3

nh
4
n + rn

(
E−1f 2

n

)
g3

nh
4
n − vnf

4
n g3

nh
4
n + vn

(
E−1f 4

n

)
g3

nh
4
n

+ (Ern)
(
Ef 2

n

)(
Eg3

n

)
h4

n − (Ern)f
2
n

(
Eg3

n

)
h4

n + (Evn)
(
Ef 4

n

)(
Eg3

n

)
h4

n

− (Evn)f
4
n

(
Eg3

n

)
h4

n + rnf
2
n

(
E−1g4

n

)
h4

n − rn

(
E−1f 2

n

)(
E−1g4

n

)
h4

n

+ vnf
4
n

(
E−1g4

n

)
h4

n − vn

(
E−1f 4

n

)(
E−1g4

n

)
h4

n − (Ern)
(
Ef 2

n

)(
Eg4

n

)
h4

n

+ (Ern)f
2
n

(
Eg4

n

)
h4

n − (Evn)
(
Ef 4

n

)(
Eg4

n

)
h4

n + (Evn)f
4
n

(
Eg4

n

)
h4

n

)
.

Note that E∗ = E, through a careful calculation, we obtain that the above sum with a cycle
of fn, gn and hn is equal to zero. Therefore, we have

〈�′(un)[�fn]gn, hn〉 + Cycle(fn, gn, hn) = 0.
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